an experimental program for extra dimensions

Joseph Lykken
Fermilab and Univ of Chicago

extra dimensions: fun or physics?

"A thousand flies can't be wrong" - S.D.

- despite ~3000 recent papers on ED, and 100 different models, are we really serious?
- the (4d) SUSY desert remains the dominant paradigm for BSM physics
- is ED just a jobs program for theorists?

hyperspace is no joke

the big picture

(see e.g. CERN colloquium by David Gross)

+ neutrinos, cosmology, rare processes, astrophysics, etc

the two big ideas

- note SUSY and extra dimensions are not mutually exclusive!
- strings require both
- ED probably needs SUSY to be stable
- SUSY probably needs ED to be pretty

why extra dimensions?

- the Standard Model
- string theory
- general relativity

the Standard Model flavor structure is too complicated for a theory of "elementary" constituents

what is this telling us?

- for molecules, atoms, and hadrons, the answer is that they are composites
- but e.g. the electron is pointlike on scales
 1/100,000 x its Compton wavelength
- except for the top quark, compositeness looks like a bad bet

the Standard Model flavor structure is too complicated for a theory of "elementary" constituents

- another answer is that there are broken flavor symmetries, probably gauged, combined somehow with GUT
- requires lots of new degrees of freedom and new dynamics to get back to SM
- difficult, messy, ad hoc
- ditto for extended technicolor schemes

the Standard Model flavor structure is too complicated for a theory of "elementary" constituents

- ED's (potentially) explain flavor structure via geometry
- hard to believe that ED's aren't at least part of the answer
- note since we don't know the scales that generate the SM flavor structure, this insight doesn't tell us the scale of the EDs!

string theory

- it is not surprising that when you quantize a relativistic extended object it turns out to have a critical dimension
- for superstrings the critical dimension is 10, not 4, and this is very fortunate...

string theory

- since strings have Planck scale built in, the SM has to come from the zero modes
- without ED's the zero mode spectrum of strings would be too simple
- if strings were 4d they would be ruled out already!

general relativity

- the fact that your GPS works shows that spacetime is dynamical
- string theory shows that consistent nonsingular dynamics can change both the dimensionality and topology of space
- so the number of spatial dimensions is not fundamental - it is a dynamical quantity which may vary with time, energy scale, or the physical system being probed

what is the energy scale of ED's?

- we don't know
- but as with SUSY we expect ED's to appear at scales associated with other kinds of physics
- there are three or four plausible candidate scales:

what is the energy scale of ED's?

- the GUT/Planck/see-saw scale, i.e. the superheavy region around $10^{15}-10^{18}~{\rm GeV}$
- the TeV scale, i.e. 100 GeV 10 TeV
- ullet the dark energy/neutrino mass scale, i.e. $rac{{
 m TeV}^2}{M_{
 m planck}}$

the GUT scale seems the most likely! but some of the ED's could show up sooner

the trouble with extra dimensions models:

(I) there are too many of them

the trouble with extra dimensions models:

(I) there are too many of them

(2) none of them are any good

partial bestiary of ED models

- ADD: 2-6 large circular ED's, SM on a brane, gravity in bulk
- RS-I: one small warped ED with brane at each end, SM on TeV brane
- RS-I variations: as above but redistribute SM and other particles between TeV brane, Planck brane, and bulk, or add second warped ED
- RS-2 and LR: one infinite warped ED, light KK gravitons
- DGP: one or more infinite (or large) flat (or slightly warped) ED's
- ullet UED: one or more ${\rm TeV}^{-1}$ sized ED's, SM in the bulk, branes are for symmetry-breaking
- generic braneworlds: SM on various branes, 6-7 small ED's, complicated (but stable?) symmetry-breaking geometries
- deconstructed ED's: new degrees of freedom approximately resemble an ED in some energy regime

none of them are any good

- most are scenarios rather than models
- scenario = set of physical assumptions which, with more work, could turn into a respectable class of models
- many have deep theoretical problems or "gaps"
- many have generic phenomenological problems
- no benchmarks!

but models suggest that ED's can do a lot:

- explain (or assist) EWSB
- explain dark matter
- lower the effective Planck or string scale
- break SUSY
- explain (some) flavor properties of SM
- improve grand unification
- explain neutrino physics
- explain dark energy

what is the physics that hides extra dimensions?

possible explanations:

- the extra dimensions are compact and small (circle, torus, line interval, sphere, Calabi-Yau, etc)
- Some/all SM particles are trapped on a brane and only probe the dimensions of that brane, not the full extra dimensional "bulk" space
- the extra dimensions are fundamentally different (fermionic=SUSY, discretized, ...)
- some combination of the above

three classes of LHC-friendly models

- UED
- ADD
- RS

UED = Universal Extra Dimensions

Appelquist, Cheng, Dobrescu

- basically the same as Kaluza and Klein
- all particles probe all dimensions (i.e. live in the bulk)
- extra dimensions are "orbifolds" of circles with common radius R
- so we should see Kaluza-Klein modes with mass ~I/R, could be as low as ~300 GeV

Kaluza-Klein modes

if spatial dimension is compact then momentum in that dimension is quantized:

$$p = \frac{n}{R}$$

from our point of view we see new massive particles

$$m^2 = m_0^2 + \frac{n^2}{R^2}$$

UED = Universal Extra Dimensions

- the "orbifold" means we truncate the circles to line intervals, and keep only even or odd KK modes for each kind of particle
- e.g. for a 5dim gauge boson $A_{\mathbf{M}}=(A_{\mu},A_{5})$, keep only the even KK modes of A_{μ} , and only the odd KK modes of A_{5} (since it appears in a covariant derviative with d/dx^{5}).
- thus the orbifolding avoids having massless scalars in the adjoint of the SM gauge group!
- orbifolding also allows chiral fermion zero modes

UED = Universal Extra Dimensions

- the orbifolding breaks translational symmetry around the circles, so KK momentum is no longer conserved
- but a discrete remnant of KK momentum conservation, called KK parity, is conserved
- this is like R parity in SUSY
- it means that KK modes in UED have to be pairproduced
- and the lightest massive KK mode (the LKP) is stable (a dark matter candidate too)

lowest KK modes of UED look like SUSY!

Cheng, Matchev, Schmaltz, hep-ph/0205314

force laws in extra dimensions

$$ec{\mathbf{F}} = \mathbf{q} ec{\mathbf{E}} = rac{\mathbf{q} \mathbf{Q}}{4\pi \mathbf{r^2}} \mathbf{\hat{r}}$$

 $ec{f F}={f q}ec{f E}=rac{{f q}{f Q}}{4\pi{f r}^2}{f \hat r}$ usual 4d Coulomb's law is derived from Gauss' law

$$\oint ec{\mathbf{E}} \cdot ec{\mathbf{d}} \mathbf{A} = \mathbf{Q}$$

$$ec{\mathbf{F}} = -\mathbf{G_N} rac{\mathbf{mM}}{\mathbf{r^2}} \mathbf{\hat{r}}$$

$$ec{\mathbf{F}} = -\mathbf{G_N} rac{\mathbf{mM}}{\mathbf{r^2}} \hat{\mathbf{r}}$$
 true also for Newton's gravitational force law $\oint rac{ec{\mathbf{F}}}{\mathbf{m}} \cdot ec{\mathbf{d}} \mathbf{A} = rac{4\pi \mathbf{M}}{\mathbf{M}_{\mathrm{Planck}}^2}$

$$\mathbf{G_N} = rac{\mathbf{1}}{\mathbf{M^2_{Planck}}}$$

$$\mathbf{M}_{\mathrm{Planck}} = 1.22 \times 10^{19} \; \mathrm{GeV}$$

force laws in extra dimensions

in 4+n dimensions (i.e. 3+n spatial dimensions), can still use Gauss' law to figure out the force law

$$ec{\mathbf{F}} = -rac{\mathbf{m}\mathbf{M}}{\mathbf{M_*^{2+n}r^{2+n}}}\mathbf{\hat{r}}$$
 analog of $\mathbf{M}_{ ext{Planck}}$

if the n extra dimensions are compact, with volume $\, {f V} \,$, then at larger distances the $\, {1\over r^{2+n}} \,$ force law must go back to the usual $\, {1\over r^2} \,$

and we can match the gravitational constants:

$$\mathbf{M}^{\mathbf{2}}_{ ext{Planck}} = \mathbf{M}^{\mathbf{2}+\mathbf{n}}_{*} \, \mathbf{V}$$

ADD braneworld models

Arkani-Hamed, Dimopoulos, Dvali

assume that only gravity sees n <u>large</u> extra compact dimensions with common circumference R:

$$\mathbf{M}^{\mathbf{2}}_{\mathrm{Planck}} = \mathbf{M}^{\mathbf{2}+\mathbf{n}}_{*} \, \mathbf{R}^{\mathbf{n}}$$

in ADD models M_{\ast} is supposed to be of order a TeV. Then the largeness of R generates the observed hierarchy between the Planck scale and the electroweak scale

these are large extra dimensions

$$n = 1 \implies R \sim 10^9 \,\mathrm{Km}$$

$$n = 2 \implies R \sim 1$$
mm

$$n = 3 \implies R \sim 1$$
nm

$$n = 6.7 \implies R \sim 10 \text{ fm}$$

Solar system

Pinhead

Gold atom

we can test these models in a variety of experiments

quantum gravity at colliders

if ADD is correct collider expts should see effects of both real and virtual massive KK gravitons

$$\sigma_{\mathbf{K}\mathbf{K}} \sim rac{1}{\mathbf{M_{\mathrm{Planck}}^2}} (\mathbf{E}\mathbf{R})^{\mathbf{n}} \sim rac{1}{\mathbf{M_{*}^2}} \left(rac{\mathbf{E}}{\mathbf{M_{*}}}
ight)^{\mathbf{n}}$$

KK graviton production (monojets)

(HLZ): Han, JL, and Zhang, hep-ph/9811350 (GRW): Giudice, Rattazzi, Wells, hep-ph/9811291

$$\sigma(\mathbf{1}+\mathbf{2}\rightarrow\mathbf{K}\mathbf{K}+\mathbf{4})=\int\mathbf{d}\mathbf{x_1}\mathbf{d}\mathbf{x_2}\mathbf{d}\mathbf{\hat{t}}\,\mathbf{f_1}(\mathbf{x_1})\mathbf{f_2}(\mathbf{x_2})\,\int_{\mathbf{0}}^{\sqrt{\hat{\mathbf{s}}}}\mathbf{d}\mathbf{m}\,\rho(\mathbf{m})\frac{\mathbf{d}\sigma_{\mathbf{m}}}{\mathbf{d}\mathbf{\hat{t}}}(\mathbf{\hat{s}},\mathbf{\hat{t}})$$

the dependence on "n", the number of extra dimensions, is all in the KK density of states:

$$\rho(\mathbf{m}) = \frac{\mathbf{M_{Planck}^2}}{\mathbf{M_s^3}} \left(\frac{\mathbf{m}}{\mathbf{M_s}}\right)^{\mathbf{n}-1}$$

$$\mathbf{M_s^{n+2}} = \frac{(2\pi)^n}{\mathbf{S_{n-1}}} \mathbf{M_*^{n+2}} = \mathbf{2^{n-1}} \pi^{n/2} \Gamma(\frac{n}{2}) \mathbf{M_*^{n+2}}$$

KK graviton production (monojets)

(HLZ): Han, JL, and Zhang, hep-ph/9811350 (GRW): Giudice, Rattazzi, Wells, hep-ph/9811291

$$\sigma(\mathbf{q}\mathbf{\bar{q}} \to \mathbf{K}\mathbf{K} + \mathbf{g})$$

$$=\frac{2\pi\alpha_{\mathbf{s}}}{9\mathbf{M}_{\mathrm{Planck}}^{\mathbf{2}}}\int d\mathbf{x_1}d\mathbf{x_2}d\mathbf{m}d\hat{\mathbf{t}}\,\mathbf{f_1}(\mathbf{x_1})\mathbf{f_2}(\mathbf{x_2})\,\rho_{\mathbf{n}}(\mathbf{m})\,\frac{1}{\hat{\mathbf{s}}}\mathbf{F_1}(\frac{\hat{\mathbf{t}}}{\hat{\mathbf{s}}},\frac{\mathbf{m^2}}{\hat{\mathbf{s}}})$$

$$F_1(x,y) = \frac{1}{x(y-1-x)} \left[-4x(1+x)(1+2x+2x^2) + y(1+6x+18x^2+16x^3) - 6y^2x(1+2x) + y^3(1+4x) \right],$$

this is the KK graviton spectrum, as it would be produced at the Tevatron for $M_s\sim 1\,\text{TeV}$

the n=6 KK gravitons are about 3 times heavier than for n=2

this is because the cross section formula, integrated over $\mathbf{x_1}, \mathbf{x_2}, \mathsf{and} \ \hat{\mathbf{t}}, \mathsf{gives}$

$$\sigma \sim \int_0^{\sqrt{\mathbf{s}}} \mathbf{dm} \, \left(1 - rac{\mathbf{m}}{\sqrt{\mathbf{s}}}
ight)^{\mathbf{2p}} \left(rac{\mathbf{m}}{\sqrt{\mathbf{s}}}
ight)^{\mathbf{n}}$$

800 1000 1200

JL, Matchev, and Spiropulu

with $p\sim 6$ from the pdfs \longrightarrow

peaks at
$$rac{
m m}{\sqrt{
m s}} \sim rac{
m n}{2
m p}$$

But, the pT distribution of the recoiling jet is almost completely independent of the number of extra dims!

this is because

$$\mathbf{m^n} = (\sqrt{\hat{\mathbf{s}}})^\mathbf{n} \left(\frac{\mathbf{m}}{\sqrt{\hat{\mathbf{s}}}}\right)^\mathbf{n} = (\sqrt{\hat{\mathbf{s}}})^\mathbf{n} \mathbf{y^{n/2}}$$

for a given fixed \hat{s} , this wants $y \sim 1$, i.e. production near threshold.

This effect suppresses pT for fixed $\hat{\mathbf{s}} \simeq \mathbf{m}$, by $1/\mathbf{n}$

so to count the number of dims you probably have to vary s.

RS = Randall Sundrum

Randall and Sundrum (!)

- only one extra dimension, and at least one brane
- but the extra dimension has negative curvature ("warped", "AdS") caused by the brane
- there are many versions of RS, but when phenomenologists say RS they always mean RS-I
- RS-I means the fifth dim is a line interval; at one end is the "Planck brane", at the other end is the "TeV" brane
- all/some SM particles live on the TeV brane

RS = Randall Sundrum

- the KK gravitons have masses ~ TeV, and their couplings to SM particles are only TeV suppressed, not Planck suppressed
- so at the LHC you can see them as difermion resonances

Davoudiasl, Hewett, Rizzo

what defines an ED scenario?

- number of ED's at each scale
- what is the compactification?
 - what is the geometry?
 - are there background fields, e.g. gauge fluxes, in the EDs?
 - what symmetries are broken/unbroken?
 - is there curvature/warping in the bulk?
 - are there visible radions or other moduli fields?

what defines an ED scenario?

- what is gravity doing?
- who is on the branes and who is in the bulk?
 - who has KK modes?
 - who gets volume-suppressed couplings?
- what about stability? consistency? UV completion?

experimental issues = opportunities

- how do you know it is ED and not something else?
- how to get experimental handles on all the features of ED scenarios
- direct versus indirect versus really indirect
- event generation and benchmark models
- collider vs flavor vs astro signals/constraints

who's on the bench?

- SUSY has official benchmark models ratified by intergalactic treaties
- ED has no benchmark models at all
- some of the most popular ED models, e.g. n=2 ADD, are not suitable benchmarks as they are already experimentally excluded
- this needs to change before 2007

event generators for ED

- until recently, the only event generators for ED models were custom hacks:
- ADD in Pythia (Matchev + JL bootleg) used for CDF and D0 monjet analyses
- ADD in Isajet (Hinchliffe + Vacavant) used for ATLAS monojet studies, now in official Isajet release
- RS-I in Herwig, also used for Atlas studies
- nothing in CompHEP

event generators for ED

- very recently, AMEGIC has implemented complete ADD Feynman rules (Gleisberg, Krauss, Matchev)
- seems like a big step forward
- if you are very nice to Frank Krauss, he will probably let you use it

lots to do

- I have left out a lot; this is just a sample
- let's create a serious experimental program for extra dimensions at the LHC!

